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Abstract—Our aim in this paper is to propose fully distributed
schemes for transmit and receive filter optimization. The novelty of
the proposed schemes is that they only require a few forward-back-
ward iterations, thus causing minimal communication overhead.
For that purpose, we relax the well-known leakage minimization
problem, and then propose two different filter update structures
to solve the resulting nonconvex problem: though one leads to con-
ventional full-rank filters, the other results in rank-deficient filters,
that we exploit to gradually reduce the transmit and receive filter
rank, and greatly speed up the convergence. Furthermore, inspired
from the decoding of turbo codes, we propose a turbo-like structure
to the algorithms, where a separate inner optimization loop is run
at each receiver (in addition to the main forward-backward iter-
ation). In that sense, the introduction of this turbo-like structure
converts the communication overhead required by conventional
methods to computational overhead at each receiver (a cheap re-
source), allowing us to achieve the desired performance, under a
minimal overhead constraint. Finally, we show through compre-
hensive simulations that both proposed schemes hugely outper-
form the relevant benchmarks, especially for large system dimen-
sions.

Index Terms—Distributed algorithms, forward-backward algo-
rithms, interference leakageminimization, iterative weight update,
MIMO interference channels, turbo optimization.

I. INTRODUCTION

A LTHOUGH the problem of (joint) precoder optimization
is an old one, it was not until the recent research on

multi-user techniques for multiple-input multiple-output inter-
ference channels (MIMO IC), such as Coordinated Multipoint
[1] and Interference Alignment (IA) [2], that the problem got
mass attention. Since the latter techniques require transmitters
and receivers to coordinate their signals, this has given rise to
a plethora of centralized or distributed algorithms that attempt
to (jointly) optimize the transmit and receive filters, given
a predetermined performance metric. Usually, they can be
categorized according to the metric that they optimize: such

Manuscript received April 08, 2014; revised August 07, 2014; accepted Jan-
uary 03, 2015. Date of publication January 22, 2015; date of current version
March 02, 2015. The associate editor coordinating the review of this manu-
script and approving it for publication was Dr. Pengfei Xia. Part of this work
was performed in the framework of the FP7 project ICT-317669 METIS, which
is partly funded by the European Union.
H. Ghauch, M. Bengtsson, and M. Skoglund are with the School of Elec-

trical Engineering and the ACCESS Linnaeus Center, KTH Royal Institute
of Technology, Stockholm SE-100 44, Sweden (e-mail: ghauch@kth.se;
mats.bengtsson@ee.kth.se; skoglund@kth.se).
T. Kim is with Department of Electronic Engineering, City University of

Hong Kong, Kowloon Tong, Hong Kong (e-mail: taejokim@cityu.edu.hk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2396005

metrics mainly include (weighted) interference leakage [3], [4],
(weighted) mean-squared error [5], [6], signal to interference
plus noise ratio [3], [7], and (weighted) sum-rate [8], [6], [9]
(an insightful and comprehensive comparison of such schemes
was done in [10]). Note that other approaches such as [11]
tackled the problem using a “CoMP-like” setup where both CSI
and data are assumed to be known globally. Despite the fact
that the latter methods attempt to solve a problem that is more
generic than Interference Alignment (in a sense that they do
not aim at suppressing interference completely), in many of the
above cases, there indeed exists an intimate relation between
the two: for instance, in the high-SNR sum-rate maximization
problem, the precoder optimization problem reduces to finding
transmit and receive filters, that satisfy the IA conditions (as
formulated in [3]).
However, as the research on IA progressed, it was quickly

revealed that many challenges have to be addressed, before any
of the promised gains could be harnessed. Such challenges in-
clude the need for global channel knowledge at each transmitter,
feasibility conditions for the existence of solutions to the IA
conditions [12], the absence of closed-form beamforming solu-
tions for generic systems, and whether limited feedback could
achieve the optimal degrees-of-freedom promised by IA, [13],
[14]. Consequently, researchers turned their attention to devel-
oping distributed schemes that rely on forward-backward (F-B)
iterations (e.g., [3], [5]–[8]), since they address most of those
challenges. Though the latter works are among the first to use
this particular F-B structure within the context of IA, its usage
is attributed to many earlier works such as [15], [16]. In brief,
each of the so-called F-B iterations exploits the reciprocity of
the network—which only holds in systems employing Time-Di-
vision Duplexing (TDD), and local Channel State Information
(CSI) at each node, to gradually refine each of the transmit and
receive filters, one at a time (the receive filters are optimized
in the forward training phase, and then transmit filters are opti-
mized in the reverse training phase). Due to the fact that most
of those schemes require a relatively large number of such itera-
tions (that seem to increase with the dimensions of the system),
this inevitably raises the question of the associated overhead1.
Despite the plethora of such schemes that implicitly employ this
structure, this major issue has not been properly addressed yet.
This issue is the main motivation for the work proposed here:

the schemes that are detailed below only require a few F-B it-
erations, while still delivering large gains in sum-rate perfor-
1Although many other works consider a more comprehensive definition of

overhead (such as [17] and [18]), we adopt a more simplistic definition of over-
head, as the required number of F-B iterations for the algorithm to converge
(keeping in mind that the actual overhead will be dominated by this quantity).
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Fig. 1. Proposed Algorithm Structure.

mance, w.r.t. the well-known distributed IA algorithm in [3]
(the most relevant benchmark). Note that although the authors
in [19] used the interference leakage as a metric, their formula-
tion entails a constraint on the desired signal space, rather than
having a ‘pure’ leakage-based scheme such as distributed IA.
By parametrizing the leakage at each receiver as a function of
some filter parameters (abstracted as in Fig. 1), our pro-
posed schemes can alternately be optimized within the turbo
iteration, thereby decreasing the leakage at the corresponding
receiver. Furthermore, the exact same structure is used to op-
timize the transmit filters. Thus, in addition to the F-B itera-
tion used by the above conventional methods, we propose the
use of a so-called turbo iteration, where the transmit/receive fil-
ters are gradually refined. The introduction of this mechanism
greatly speeds up the convergence, and allows us to achieve the
desired performance with a strikingly small number of F-B iter-
ations. For that purpose, we propose two different update struc-
tures, one resulting in full-rank filters, while the other, possibly,
in rank-deficient ones. Although this might seem counter-intu-
itive at a first glance, we exploit the rank-deficient update struc-
ture to “simplify” the alignment, further enhancing the conver-
gence speed. Finally, we compare both algorithms and conclude
that although both schemes greatly outperform the benchmark
in the low-overhead regime (especially as the dimensions of the
problem grow), combining the turbo iteration with the rank-de-
ficient update structure provides the best performance.
In the following, we use bold upper-case letters to denote

matrices, and bold lower-case denote vectors. Furthermore, for
a given matrix denotes the matrix formed by taking
columns to , of denotes its trace, its Frobe-
nius norm, its determinant, and its conjugate transpose.
In addition, denotes the th eigenvalue of a Hermitian ma-
trix (assuming the eigenvalues are sorted in increasing order),
and denotes the set of unitary matrices, i.e.,

. Finally, denotes the or-
thogonal complement of a subspace , while denotes
the cardinality of a set .

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a -user MIMO interference channel
(IC), where the received signal (after applying the receive filter),
is given by

where the first term represents the desired signal, and the
second one denotes undesired inter-user interference. In the
above, is the channel matrix from transmitter
to receiver and are the and

transmit and receive filters of transmitter and receiver
, respectively. Furthermore,

is the -dimensional zero-mean AWGN vector with co-
variance matrix , and the -dimensional vector of
transmit symbols intended to receiver , with covariance matrix

, where is the transmit power, and
. We assume a TDD architecture, where channel

reciprocity holds.
A. Leakage Minimization as a Surrogate Problem for
Sum-Rate Maximization
With the above in mind, the achievable rate of communica-

tion for each user is given by,

where and
are the signal and interfer-

ence covariance matrix at receiver 2. As (high-SNR
regime), the achievable rate can be approximated by,

Then, one can formulate the high-SNR sum-rate maximization
problem as follows,

(2)

Note that in this work, we only focus on optimizing the interfer-
ence subspace (as previously proposed algorithms in [3], [7]).
Thus, by dropping the signal term in , we can bound it as
follows,

where follows directly from applying Hadamard’s in-
equality, i.e., for , and from the fact
that . Although this result is expected,
it proves that minimizing the interference leakage at each user,
results in optimizing a lower bound on the user’s high-SNR
rate.
B. Problem Formulation
Now that we have motivated the leakage minimization

problem, we turn our attention to devising an iterative algo-
rithm for that purpose. As mentioned earlier, the schemes that
2Similarly, we define the interference covariance matrix at transmitter , as

follows,

(1)
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we study in this work, fall under the category of distributed
schemes, where each receiver/transmitter optimizes its filter,
based on the estimated interference covariance matrix. In other
words, at the th F-B iteration, after estimating and updating its
interference covariance matrix, , receiver aims
to update its filter, , such as to optimize some
predetermined metric (interference leakage, mean-squared
error, sum-rate, etc ). The F-B iteration structure was first
applied within the context of IA, in the distributed IA algorithm
(proposed in [3] and re-written below for later reference),
where each receive filter update is such that,

(3)

where is the receive filter power constraint. In other words,
in the forward phase each receiver estimates its interference co-
variance matrix and updates its filter such as to minimize the
interference leakage. Then, in the backward phase, exploiting
channel reciprocity, transmitters estimate their respective in-
terference covariance matrices, and use the same update rule
of minimizing the leakage. It can be shown that this iteration
process, will converge to stationary points of the leakage func-
tion. Thus, for the interference leakage cost function, F-B it-
erations can be used to gradually refine the transmit and re-
ceive filters, thereby ultimately creating a -dimensional inter-
ference-free subspace at every receiver. Ideally, as , the
transmit and receive filters that the algorithm yields should sat-
isfy the following IA conditions [2],

The existence of transmit and receive filters that fulfil this con-
dition is guaranteed, if the system is feasible (as described in
[12]). The distributed IA algorithm has been extensively used
and experimentally observed to closely match the theoretical
predictions of IA, in small to moderate network configurations.
However, one can see that as the dimensions of the problem
grow (more antennas and streams), better performance can be
achieved by relaxing the unitary constraint.
This sub-optimal performance in multi-stream settings, is

partly attributed to the fact that all the streams are allocated the
same power—an inherent property of the unitary constraint in
(3). It is evident at this point that much could be gained from
allocating different powers to different streams, especially as
the number of such streams grow, i.e., as increases. Con-
sequently, we propose to relax the unitary constraint in (3),
and allow the transmit/receive filter columns to have unequal
norms, i.e., the receive filter update , is as follows,

(4)

Note that the factor in (3) ensures that the receive
power constraint, , is the same for both (3) and (4).

Let and be the feasible sets of (3) and (4) respectively,
i.e., and

. Consequently, for any
. This implies

that , and that indeed (4) is a relaxation of (3). In addi-
tion, note that the distributed IA problem in (3) has a simple
analytical (well-known) solution. Although the reformulation
in (4) promises to deliver better performance, it does make the
problem non-convex.
In spite of this non-convexity, the problem can still be tackled

in many ways. Firstly, note that (4) can in fact easily be solved
by writing the problem in vector form and finding the globally
optimal rank-one solution spanned by the eigenvector of
with the minimum eigenvalue. In addition, it is also known that
in the case of (4), Semi-Definite Relaxation (SDR) provides the
optimal solution as well [20]. However, the solution that both
these methods yield is rank-one3, and it is well-known from the
interference alignment literature that the optimal filter rank in
the high-SNR regime is (assuming that has been selected
properly such that the system is feasible). On the other hand,
at medium and low-SNR, the sum-rate performance will im-
prove if the filters have reduced rank (in the limit, the water-
filling power allocation results in one stream being active, in the
very low-SNR). The main idea behind our proposed algorithm
is therefore to not solve (4) but rather to use it as a heuristic,
while preventing the algorithm from always converging to the
aforementioned rank-one solution of (4), either explicitly using
a rank-preserving algorithm or implicitly by exploiting the tran-
sient phase of the rank-reducing algorithm and stopping after a
small number of iterations (more about this in Section III). As
a result, those algorithms should give a better performance than
the optimal solution to (4) given above (simulations will show
that this claim is indeed true).
Thus, imposing two different update rules on the transmit/

receive filters yields the two different algorithms mentioned
above: while one of the update rules do not necessarily result
in full-rank transmit/receive filters (which we refer to as rank-
reducing updates), the other one implicitly enforces full-rank
transmit/receive filters (which we refer to as rank-preserving
updates). The reason for this distinction, as well as its impact,
will become clearer in Section IV.A.

III. PROPOSED SCHEME FOR RANK-REDUCING UPDATES

Within this class, we opted to use the most generic update rule
(i.e., the one that represents the “widest” class of matrices), for
obvious reasons. Thus, we propose the following update struc-
ture,

(5)

where and are such
that . Furthermore, and
3Since the rank is a coarse measure, we use a wider definition of the rank

of a matrix, throughout this paper. Let , then we de-
fine , where

are the singular values of , and a predetermined tol-
erance.
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are the combining weights of and , respec-
tively.4We underline the fact that some choices of and
should be better than others, in terms of cost function value. Al-
though this would suggest that they should be optimized within
each iteration, a quick look at the resulting optimization problem
reveals that the complexity of such a scheme would be tremen-
dously high. As a result, we opt to have the sets and

fixed throughout the algorithm. In addition to the fact
that the update rule in (5) is the most generic possible (i.e., it can
represent any matrix), another reason for picking such a struc-
ture is that the resulting optimization problem is a relaxation
(although a non-convex one) of the optimization solved by the
distributed IA [3]—a result that is formalized in the next sub-
section.

A. Relaxation Heuristic

By incorporating the update in (5) into (4), the resulting op-
timization problem is given by,

(6)

Since we already proved that (4) is a relaxation (3), it remains
to show that (4) is equivalent to (6) (as defined in [21]). Note
that this immediately follows from the one-to-one nature of the
update in (5): indeed (5) should be seen as a one-to-one mapping
, from to (for fixed and ), i.e.,

.
Summarizing thus far, we relaxed the distributed IA problem

in (3), but made the process of solving it more complex. In view
of simplifying the solution process, we imposed a structure on
the variables of the problem (the update rule in (5)): generally,
this has the effect of constraining the variables to have a partic-
ular structure, i.e., adding an additional constraint set to the
problem. Thus needs to be as “wide” as possible, such that it
does not alter the feasible region. This is the reason for choosing
a generic update rule (that results in encompassing a “wide”
range of matrices, e.g., unitary).
Although the relaxation argument implies that such a scheme

will yield “better” solutions than its distributed IA counterpart,
two comments on the latter statement are in order. Firstly, the
obvious fact that the solution of the relaxed problem, (6), will be
lower than that of the original problem, (3), is contingent upon
both schemes being able to find the global solutions to their re-
spective problems. Furthermore, since both problems have to
be solved at every iteration, it is rather hard to show that at any
given iteration, the leakage value for one of the schemes will be
better or worse than the other one (since the sequence
is different for each of the schemes). As a result, although the
relaxation argument cannot lead to a rigorous proof of the su-
4Generally speaking, there are other ways to “partition” the -dimensional

space in question, i.e., and
, where . However, in that case, selecting

the best value of will likely depend on the particular problem instance, and
thus will have to be selected based on empirical evidence. Consequently, we set

for the sake of simplicity.

periority of any of the schemes, it does provide a well-founded
heuristic for adopting such an update rule.

B. Problem Formulation
Now that we showed that (6) is a relaxation of (3), we proceed

to rewrite (6) into a simpler equivalent problem, making use of
the following result.
Proposition 1: Let be a given full rank

matrix, and a unitary matrix. Then there exists
and such that , where

. Furthermore, and .
Proof: Refer to Appendix A

As a result, Proposition 1 implies any , can
be written as , and consequently,
the second constraint in (6) can be removed without changing
the domain of the optimization problem. Then, by applying the
one-to-one mapping , we
rewrite (6) as,

(7)

C. Turbo Optimization
Due to the fact that is not jointly convex in and
, alternately optimizing each of the variables stands out as

a possible solution. Furthermore, even when one of the vari-
ables is fixed, the resulting optimization problem is still a non-
convex one, due to the non-affine equality constraint. Still, it
is possible to find the globally optimum solution for each of
the variables, as shown in Lemma 1. By repeating this process
multiple times, we wish to produce a non-increasing sequence

( being the turbo iteration index) that
converges to a non-negative limit. Thus, in addition to the main
outer F-B iteration, , we now have an inner loop (or turbo
iteration), where and are sequentially optimized.
With this in mind, for a given , the sequential updates

are defined as follows:

where the inner optimization problems are elaborated below,
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Remark 1: Both and are non-convex due to the
quadratic equality constraint. Note that applying convex relax-
ation by replacing the equality by an inequality (thus forming a
convex superset) will not help: indeed one can show in that case
that the sequences of optimal updates within the turbo iteration,
are such that and (consequently,

, implying that the algorithm converges to a point
that does not necessarily correspond to stationary points of the
leakage function).
The following lemma provides the solution to the different

subproblems of our proposed algorithms.
Lemma 1: Consider the following non-convex quadratic pro-

gram,

(8)

where . Then, the (globally
optimum) solution is given by

(9)

where is the unique solution to

in the interval .
Moreover, is monotonically decreasing in , for

.
Proof: Refer to Appendix B.

Though it might seem that (4) can be solved using Lemma
1, i.e., by setting , this does make the necessary and
sufficient conditions inconsistent (refer to Appendix B). On the
other hand, it becomes clear at this point that is a special
case of (8), by letting

(keeping in mind that
, it is evident that ). Applying the

result of Lemma 1, we now write the solution to as,

(10)

Since the function is monotonically decreasing, the solu-
tion can be efficiently found using the bisection method.
The process of solving follows exactly the same rea-

soning as above. By letting
. Then, the ap-

plication of Lemma 1 immediately yields the solution to ,

(11)

D. Reverse Network Optimization

Due to the inherent nature of the leakage function, the re-
verse network optimization follows the same reasoning as the
one presented above. Thus, to avoid unnecessary repetition, we
just limit ourselves to stating the results, skipping all the deriva-
tions. The update rule for the transmit filter as is set as follows
(similarly to (5)),

(12)

where and are such
that . Furthermore, and

are the combining weights of and , respec-
tively. Then, the resulting sequential optimization problems are
given as follows,

where is the transmit filter power constraint, and , the
leakage at transmitter , is given by

Again, the same block coordinate descent structure can be
employed to optimize the weight matrices and . Using
the same reasoning as earlier, one can obtain the optimal up-
dates, using the result of Lemma 1, to yield,

(13)

(14)

E. Convergence Analysis

As shown earlier, although the problem solved within the
turbo iteration is a non-convex one (7), we can still show that
the application of the updates for and (given in
(10) and (11), respectively), cannot increase the leakage at each
receiver (7).
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Theorem 1: For fixed , the leakage within
the receiver turbo iteration is non-increasing, i.e., the sequence

is non-increasing, and converges to a non-
negative limit , where and are given
in (10) and (11).

Proof: The proof immediately follows from showing that
for a fixed F-B iteration number , the following holds,

(15)

Note that follows immediately from the definition and
solution of . Consequently, the application of the update

, given by (10), cannot increase the cost func-
tion. Similarly, points that satisfy (11) minimize (as shown
by Lemma 1). Thus, the update given in (11)
cannot increase the cost function, and follows. Therefore,
the sequence is non-increasing, and
since the leakage function is non-negative, we conclude that

converges to some non-negative limit
.
With this in mind, not only does Theorem 1 establish the con-

vergence of the turbo iteration to some limit, but also that the
leakage is non-increasing with each of the updates (as imme-
diately seen from (15)). Although Theorem 1 shows the con-
vergence of the turbo iteration, to some limit, one cannot claim
that this limit corresponds to a stationary point of the func-
tion, because the variables in (7) are coupled [22]. Moreover,
recall that we do not wish our algorithm to converge to sta-
tionary points of the leakage function since the latter correspond
to rank-one solutions (following the discussion in Section II.B).
Consequently, showing the convergence of the block coordinate
descent method to stationary points becomes much less critical
in our case, as long as we can establish the non-increasing na-
ture of the leakage. In addition, it is not hard to see that exactly
the same reasoning can be used to extrapolate the result of The-
orem 1 to show that the updates for the transmit filter weights
(given in (13) and (14)), can only decrease the leakage at the
given transmitter, and thus establishing the convergence of the
turbo iteration for the transmit filter weights.

F. Convergence to Lower-Rank Solutions
For convenience, we define as themaximum number of F-B

iterations, and as the maximum number of turbo iterations,
for our algorithm. Strong (empirical) evidence suggests that the
proposed algorithm will gradually reduce the transmit/receive
filter rank, and converge to rank-one solutions, as .
As a result, operating the algorithm with large values of
will result in a multiplexing gain of 1 degree-of-freedom per
user (highly suboptimal especially if multistream transmission
is desired). Conversely, by allowing the algorithm to gradually
reduce the rank of a given transmit/receive filter5, we exploit
5If the weight combining matrices at the output of the turbo iteration (for, say,

the receive filter update) are rank deficient, then resulting receive filter is rank
deficient as well. The rank-reduction process is done by eliminating linearly
dependent columns of and , and appropriately scaling each of them,
to fulfil the power constraint.

the “transient phase” of this algorithm stopping before conver-
gence to rank-one solutions (i.e., for small values of ). In
addition, recall that reducing the transmit/receive filter rank also
reduces the dimension of the interference that is caused to other
receivers (this is beneficial in the interference-limited regime):
this makes the alignment of interference “easier” and greatly
speeds up the convergence. Note as well that although having
small values of is extremely desirable (the associated com-
munication and computational overhead will be relatively low),
having them too small will evidently result in poor performance,
e.g., . This does suggest the existence of a
trade-off on and , between the performance and overhead.
Unfortunately, a mathematical characterization of the latter re-
veals to be impossible, and we will rely on empirical evidence
to select them.

Algorithm 1: Iterative Weight Update with Rank-Reduction
(IWU-RR)

for do
// forward network optimization

Update receiver interference covariance matrix
for do

Compute in (10), in (11)
end for
Check rank and perform rank-reduction
Update receive filter in (5)
// reverse network optimization

Update transmitter interference covariance matrix
for do

Compute in (13), in
(14)

end for
Check rank and perform rank-reduction
Update transmit precoder in (12)

end for

IV. RANK-PRESERVING UPDATES

A. Proposed Update Rule and Problem Formulation
An inherent consequence of the coupled nature of the weight

updates for and , i.e., (10) and (11) (as well as the
turbo-like structure of the algorithm), is the fact that if any of
the latter are rank-deficient, then the other one will be rank-
deficient as well. Moreover, imposing an explicit rank constraint
would make the problem extremely hard to solve (since most
rank-constrained problems are NP-hard). Alternately, one way
to have the algorithm yield full-rank solutions, is to use another
update rule (shown below) where this effect is absent, i.e.,

(16)

where is such that
is the combining weight matrix for the receiver up-

date, and is the step size for the receive filter update. Note
that due to the dependence of the update on the current receive
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filter, , it is easy to verify that is full rank, if is.
In addition, if both and satisfy the power constraint,
i.e., and , then .
Similarly to (6), by incorporating the above update structure,

the resulting optimization problem at each receiver is stated as
follows,

(17)

A few comments are in order at this point regarding the simi-
larities and fundamental differences between the rank-reducing
update proposed earlier, and the rank-preserving update above.
Given that both result in non-convex optimization problems,
they both rely on a coordinate descent approach to optimize each
of their respective variables. In addition, it is clear that the rank-
reducing update in (5) is more generic than the rank-preserving
update in (16). As a result, the relaxation argument that was put
forth to motivate the use of the update in (5) (Section III.A),
no longer holds here. Furthermore, both algorithms have ex-
actly the same structure: in that sense, after updating its interfer-
ence covariance matrix, receiver wishes to optimize both its
combining weight and step-size, i.e., and , such as to
minimize the resulting interference leakage at the next iteration.
Plugging (16) into (17) yields the cost function at receiver

(18)

B. Inner Optimization
Again, we will use block coordinate descent to mitigate the

non-convexity of (18), implying that receiver optimizes both
its weight combining matrix and step size ( and ), al-
ternately and sequentially, within the turbo iteration, to produce
a non-increasing sequence that will con-
verge to some non-negative limit. Thus, given at the th
turbo iteration, the sequential updates and are
chosen, as follows:

where

Note that in non-convex due the quadratic equality
constraint, but can be solved using Lemma 1 by letting

.
Applying the result of Lemma 1 the optimal update is given by,

(19)

Given , the optimization for is formulated as fol-
lows,

(20)

where we let

for notational simplicity.
The main issue that one has to carefully consider while op-

timizing is that the sign and magnitude of in (20) may
vary depending on the particular instance and channel realiza-
tion. Furthermore, we also need to rule out the fact that
might in fact be concave in (since by finding the stationary
points, we would be maximizing our cost function), or having
many extrema. The result of Lemma 2 addresses all those issues
(whose proof is given in Appendix C).
Lemma 2: The function

is convex on the interval ,
and thus has a single unique global minimum given by

.

Proof: Refer to Appendix C.
Lemma 2 establishes the uniqueness of the solution to ,
by showing that is indeed convex in .
Thus, the update for can be simply expressed as,

(21)

C. Reverse Network Optimization
We again exploit the duality that is inherent to the structure

of the leakage function, to apply the same reasoning to obtain
the optimal updates for the reverse network optimization phase.
Thus, skipping all the details, we limit ourselves to just pre-
senting the results. Similarly to the receiver update, each trans-
mitter updates its filter according to the following rule,

(22)

where is such that , and
is the matrix of combining weights. Thus,
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the resulting optimization problems solved within the turbo it-
eration are as follows,

where the interference leakage at transmitter is given by,

(23)

Finally, the optimal updates within the turbo iteration are as fol-
lows,

(24)

Using Lemma 2, the optimal update for is,

(25)

where

Algorithm 2: Iterative Weight Update with Rank-Preservation
(IWU-RP)

for do
2: // forward network optimization

Update receiver interference covariance matrix
4: for do

Compute in (19), in (21)
6: end for

Update receive filter in (16)
8: // reverse network optimization

Update transmitter interference covariance matrix
10: for do

Compute in (24), in (25)
12: end for

Update transmit precoder in (12)
14: end for

D. Convergence of Turbo Iteration

The convergence of the turbo iteration (for both the receive
and transmit filter updates) can be established using a similar
reasoning as the one used in Section III.E. In other words, we
show that the application of each update cannot increase the cost
function, i.e.,

The proof follows exactly the same argument in as the one in
Theorem 1, i.e., by showing that the updates
in (19), and in (21) cannot increase the cost
function.

V. IMPLEMENTATION ASPECTS AND COMPLEXITY

The major drawback for previously proposed distributed
schemes that rely on F-B iterations, is that they assume a large
number of F-B iterations to deliver their intended performance,
ranging from hundreds to thousands (as we shall see in the
next section)—a prohibitively high cost since they correspond
to actual channel uses between the transmitter and receiver.
The chief advantage of the proposed approach is the fact that
it greatly reduces the latter communication overhead to a few
iterations, while still retaining a very high performance (as
simulations will show).
We will use the flop count as a surrogate measure of com-

plexity, although it is well known that the latter is a rather coarse
one. Assume for simplicity that (this is
consistent with the simulation parameters), and denote by the
complexity per F-B iteration. Note that the latter quantity will
be largely dominated by the computationally demanding oper-
ations such as matrix product, matrix inversion, and eigenvalue
decomposition (EVD). With this in mind, for

, then needs flops. Furthermore, inverting an
matrix requires flops, while computing the EVD of

an Hermitian matrix using the SVD requires flops6,
resulting in each update in IWU-RR requiring .
Thus, keeping in mind that each iteration involves such up-
dates repeated times, and that EVD is applied to an
matrix, the complexity of IWU-RR is

The same logic applies in the case of IWU-RP, except that each
update requires , to yield

Given that the complexity of the bisection method is negligible
in comparison with the above, and that the latter depends on
the channel realization, and many of the problem parameters
(making it extremely difficult to characterize), we have ignored
6Generally speaking, the complexity of operations such EVD or SVD, are

data dependent: though it is well-known that they are , the exact values
depend on the matrix itself. For simplicity, we approximate the complexity of
an SVD as [23].
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the cost of the bisection method in both cases. Finally, for dis-
tributed IA, the cost is largely dominated by the EVD of an
matrix, to yield

Since our schemes employ relatively small values of , the
complexity (per F-B iteration) is similar for all the above
schemes (albeit slightly lower for distributed IA). However, our
simulations generally indicated that our proposed algorithms
require a much smaller number of F-B iterations to reach
a predetermined tolerance value. Consequently, the overall
complexity of our schemes will be much lower.

VI. SIMULATION RESULTS
As stated earlier, the performance of the proposed schemes is

largely dependent on the number of F-B iterations , as well as
the number of turbo iterations . Since any explicit optimiza-
tion of the latter quantities is a rather tedious task—if not in-
feasible, we will rely on simulations to evaluate their effect, as
well as both algorithms’ performance. For that matter, we fix
the maximum number of F-B iterations to a small value, e.g.,

(since we wish to keep the communication overhead at a
low level), and evaluate the algorithms’ performance for several
values of . In addition, initializing distributed IA with random
rank- unitary transmit filters, the stopping criterion in all sub-
sequent simulations is a maximum number of F-B iterations ,
thus keeping the overhead the same for all schemes. Although in
this case, the proposed schemes will have higher computational
overhead with respect to distributed IA, this will easily be offset
by the gains in performance (as this section will clearly show).
We choose the matrices (for the receive filter

optimization), and (for the transmit filter opti-
mization) as random unitary matrices obtained by applying the
QR decomposition to random matrices with Gaussian i.i.d en-
tries. Because the latter matrices are fixed throughout the en-
tire algorithm, we can see that their choice is irrelevant, firstly
since it is not based on some a priori channel information (for
instance, the performance will improve by choosing to
span the range of ). Moreover, we generate the channel
matrices as i.i.d. circular Gaussian random variables, which are
stochastically invariant to unitary tranformations. All the sum-
rate curves are averaged over 1000 channel realizations. We re-
iterate the important fact that our schemes only optimize the in-
terference subspace, without any regard to the signal or noise.
Thus, a comparison with schemes such as max-SINR [2] and
(weighted) MMSE [5], [6] is somewhat not relevant for this
work, since they also optimize the desired signal subspace.

A. Evolution of Interference Leakage versus and
Using insights from the feasibility of IA [12], [24], we test the

robustness of the proposed schemes against the following sce-
nario, known a priori to be infeasible. Though this might seem
to put distributed IA at a disadvantage (given that the latter is
designed to handle feasible scenarios), scenarios that are known
to be feasible are few, and might not always be of practical in-
terest. Thus, robustness to infeasible IA configurations is desir-
able. Fig. 2 shows the (average) evolution of the leakage with
the number of F-B iterations, for both our schemes (plotted for
several values of ), and distributed IA. Although both schemes

Fig. 2. Interference Leakage as a function of (4 4 MIMO, 4 users,
).

Fig. 3. Sum-rate of proposed schemes for 10 10 MIMO IC, 4 users
, for different number of turbo iterations.

outperform distributed IA for all values of , the gap between
IWU-RR and the benchmark is indeed impressive ( to 5 or-
ders of magnitude, depending on the value of ). As expected,
this gain stems from the ability of IWU-RR to perform rank-re-
duction, thereby decreasing the dimension of the interference at
the corresponding receiver. In addition we observe that the gain
from each additional turbo iteration is decreasing: this is clearly
visible in the case of IWU-RP, where the curves corresponding
to and are almost identical, implying that only a
few turbo iteration are needed to give the desired performance
boost.
B. Sum-Rate Performance
Next, we simulate the ergodic sum-rate of both our schemes

for a 10 10 MIMO, 4-user MIMO IC with , known to
be proper [24], and fix the number of F-B iterations to 2, for
all algorithms. We use the distributed IA algorithm in [2] as a
benchmark, but most importantly, we also include the rank-one
solution to (4), given by SDR. Fig. 3 reflects the effect of the
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Fig. 4. Sum-rate of proposed schemes for a 4 4 MIMO IC, 3 users
, v/s distributed IA for different number of F-B iterations.

turbo iteration on the sum-rate performance of both algorithms:
by running just a few turbo iterations, we see that both schemes
significantly outperform distributed IA, especially in the high
SNR region, when the gain becomes very large! In addition we
observe that indeed the rank-one solution of SDR offers ex-
tremely poor performance in terms of sum-rate (as discussed
in Section II.B). Moreover, we observe that the high-SNR slope
for IWU-RR is higher than that of SDR, implying that
on average, IWU-RR yields transmit/receive filters whose rank
is larger than 1.
Moreover, we observe from Fig. 3 that the performance

gap is very pronounced, e.g., the high-SNR spectral efficiency
of IWU-RR with 10 turbo iterations is almost double that of
distributed IA. Interestingly, note that for IWU-RR
can achieve, albeit not optimal, some degrees-of-freedom gain
(shown by the linear scaling of the sum-rate at high SNR), with
just 2 F-B iterations. The latter does strongly suggest that the
gains of the current approach become more accentuated, as the
dimensions of the system grow.
Remark 2: One might be led to think at this point that the im-

pressive gain in sum-rate for the proposed schemes comes from
the fact that the rank reduction transforms the initial IA problem
into one of smaller dimensions (while distributed IA is solving
the original problem), and thus that the latter simulations do not
provide a basis for a fair comparison. However, this argument
can be directly refuted by comparing the sum-rate performance
of distributed IA, with the rank-preserving scheme (IWU-RP):
as seen in Fig. 3, although both schemes yield full-rank pre-
coders, IWU-RP still significantly outperforms distributed IA
(the gap also increases with the number of turbo iterations, and
as the dimensions of the problem grow). This seems to suggest
that those gains follow from introducing the turbo iteration (for
both schemes), and additionally from solving a relaxed problem
(in the case of IWU-RR).
Next, we fix both the number of F-B and turbo iterations in

our schemes to 2 and simulate the performance of distributed
IA for a varying number of F-B iterations (for a feasible
4 4 MIMO IC, with ). Fig. 4 clearly shows that for

Fig. 5. Sum-rate performance in more realistic setting (8 8 MIMO IC,
4-users, ).

Fig. 6. Ergodic sum-rate of proposed schemes vs distributed IA, as a function
of operating SNR (4 4, 3-user MIMO IC ).

and , distributed IA has a similar performance
as both our schemes in the medium-to-low SNR region (and a
worse one in the high-SNR region). It is only for that
it starts to outperform them in the medium-to-low SNR region
only. This implies that the overhead requirement of distributed
IA is at least 50% more than our schemes, for this particular
case (further simulations suggest that this trend increases with
the system dimensions). Moreover, we see that distributed IA
delivers its “optimal” performance after a large enough number
of F-B are run (corresponding to extremely high communication
overhead): this suggests that the poor performance of distributed
IA in all simulations is due to the fact that there is significant in-
terference leakage for small values of .

C. Performance in More Realistic Setup
In view of having a more realistic assessment—albeit still far

from accurate—of the algorithms’ performance, in somewhat
more practical environments, we simulate 8 8 MIMO trans-
mission with 4 cells, 1 user per cell, 4 streams per user (fixing
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for all algorithms, and for our algorithms).
We modify the cross-channel gains, , such that
the resulting SIR is dB, to (coarsely) emulate cell edge
users. We can see from Fig. 5 that though both schemes have
a similar performance as distributed IA in the very low-SNR re-
gion, they outperform it for SNR values greater than 7 dB (the
gap being increasing with the SNR): IWU-RR outperforms dis-
tributed IA by % at 15 dB of SNR, and % at 20 dB.
This indeed shows that our schemes are good candidates for op-
erating in such practical scenarios. On another note, we also see
that IWU-RR and SDR have a similar high-SNR slope (thus
implying that IWU-RR finds a rank-one solution in almost all
cases). However, the massive gap between IWU-RR and SDR,
indicates that the solution provided by the IWU-RR yields sig-
nificantly higher effective channel gain than the solution found
by the SDR.

D. Discussions

It is interesting to notice in Figs. 3–5 that the gains for both
schemes seem to happen in the medium-to-high SNR region:
this is expected, since in that regime, reducing interference is
vital to increasing the sum-rate. The observed performance
boosts for both IWU-RR and IWU-RP are attributed to the
introduction of the turbo-iteration. Furthermore, in the case of
IWU-RR, the massive performance gain additionally comes
from the fact it is solving a relaxed problem. On another note,
Fig. 3 shows that indeed the optimal rank-one solution to (4)
provided by SDR is massively suboptimal in terms of sum-rate
performance. This also provides a clear motivation for our
work, where the proposed algorithms were mainly aimed at
avoiding this rank-one solution.
Though negligible, one can indeed see a degradation in per-

formance of both schemes, with respect to distributed IA, in the
low-SNR region (as seen from Figs. 3–6). Despite the that fact
that full-rank filters are known to be optimal in the high-SNR
regime (thanks to the insights from interference alignment), in
the very low-SNR (interference-free) regime however, matched
filtering is the optimal strategy, and consequently rank-one fil-
ters are optimal as well.We note that although our rank-reducing
algorithm does find a rank-one solution, it might be the “wrong
one”, i.e., different from the matched filtering direction: this is
due to the fact that both our algorithm and distributed IA look
for solutions that reduce interference, that most likely are not
aligned with the matched filtering direction. On the other hand,
the full-rank solution given by distributed IA is likely to transmit
a reasonable amount of energy along that direction. This might
explain the reason that distributed IA exhibits better perfor-
mance than IWU-RR, in the low-SNR region. Moreover, recall
that schemes such as the proposed ones and distributed IA do
not take into account the desired signal and noise subspace. As
a result, one can at best speculate about their low SNR behavior
(since the SNR is not part of their mathematical formulation).
However, referring to Fig. 6, we can see that this degradation
is minimal (around 5% for IWU-RP and 8% for IWU-RR, over
the benchmark scheme). A possible alternative to mitigate this
issue is to select the scheme based on the operating SNR, i.e.,
select IWU-RP in the low-SNR region, since it has a similar per-
formance as distributed IA (as seen from Figs. 3–6): this can be

easily implemented since both algorithms have the exact same
structure, and only the updates have to be changed.
In conclusion, though both schemes are extremely similar in

their algorithmic structure (i.e., both update the filter weights
within a turbo iteration), both are distributed, optimize the same
metric, and require the same (local) CSI quantities at each node,
they indeed have some fundamental differences. The fact that
the filter update equations are different has several implications:
the update for IWU-RR does not necessarily lead to full rank fil-
ters, and though it was shown that the latter attempts to solve the
relaxed problem in (4), such claim cannot be made for IWU-RP
mainly due to the different update structure. Finally, we com-
pared their performance in several scenarios via simulations,
and suggested reasons for the behavior we observed.

VII. CONCLUSION

Within the context of the leakage minimization problem,
we proposed two distinct schemes based on rank-reducing
(IWU-RR) and rank-preserving (IWU-RP) filter updates,
where the transmit and receive filter weights are iteratively
refined in a turbo-like structure. We then showed that they are
well suited for delivering high spectral efficiency (compared
to the well-known distributed IA algorithm), while generating
very small overhead (typically, only a few F-B iterations).
Though the introduction of the so-called turbo iteration signif-
icantly boosted the performance of both schemes, it is clear
that its impact was much more significant when combined
with the rank-reducing updates in IWU-RR, thus allowing it to
achieve a performance that otherwise required a much larger
number of F-B iterations. In that sense, the proposed schemes
enabled us to tradeoff the communication overhead associated
with the F-B iterations—a rather expensive resource, with
computational complexity (an immensely cheaper resource).

APPENDIX

A. Proof of Proposition 1

Given and , and using the fact that and are uni-
tary and orthogonal, the proof is simple after noting that any
subspace can be expressed as a sum of its components over
orthogonal directions (a result that trivially follows from the
orthogonal decomposition theorem), i.e., ,
where and are any two orthogonal projection matrices.
In particular, let and , then

, where and
.

B. Proof of Lemma 1

The result is a special case of [25], which shows that strong
duality holds for all complex valued quadratic problems with
up to two quadratic inequality constraints. It is straightforward
to show that (8) and its dual are strictly feasible. Furthermore,
since the equality constraint is equivalent to the two
inequality constraints and , the results
of [25] show that the globally optimum solution of (8) can be
obtained from its dual. For the specific formulation (8), the so-
lution takes a particularly simple form. Adding the Lagrange
multipliers of the two inequality constraints into a single dual
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variable , the necessary and sufficient conditions of ([25], The-
orem 2.4) can be written as

(26)

(27)

(28)

The last inequality is fulfilled when (
can be excluded since it results in

). Next, we study . Let
be the eigenvalues of (sorted in increasing order), and

their corresponding eigenvectors. We first rewrite
as

where . Note that we can express the matrix
as a function of , as

. Thus, we rewrite as
follows,

(29)

where . A quick look at this last expression re-
veals that indeed is strictly monotonically decreasing in ,
for . Consequently,
has a unique solution. To find the upper bound on to use in a
bisection search, note that if then

where . Consequently if
, we get . This concludes the

proof.

C. Proof of Lemma 2

Let be the set of local and global minima of , which
can written as,

where . We will show
that the above set has a single element, thereby establishing that

is a convex problem, and derive the solution.

Defining , we start by finding the zero-differ-
ential points of , i.e.,

where the last
equation stems from squaring both sides. Note that some of the
roots of will not correspond to zero-differential points (we
will remedy this fact later). Letting , we can write the
solution of as,

Moreover, since we are interested in solutions to that lie
in the interval , we verify that indeed lie in this
interval. This can be easily done by considering two cases,
and . Using exactly the same manner, we can show

that if , then and ,
thus concluding that both lie in the interval . This said,
by discarding negative solutions, the solution to is

, i.e.,

Note that both and , lie in the interval . Recall that not
all the solutions of correspond to zero-differential points of

—in fact it is easy to show that and ,
implying that has a single unique zero-differential point at
. Thus, it remains to show that . Using the fact

that , and noting that , we
rewrite this condition as,

The last equation can be easily shown, by plugging in the values
for and (we will omit the derivations since they are rather
straightforward and easily reproduced).
Thus, we conclude that the set of global minima of

, has a single element, thereby establishing that
is convex and has single global minimum given by

.
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